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1. Introduction

Kriging has beenwidely used in geosciences to incorporate spatially
sampled data and to estimate the conditional mean field and its
associated (co-)variance (Journel and Huijbregts, 1978; Clark, 1979;
Kitanidis, 1997; Deutsch and Journel, 1998; Zhao, 2004). Although in
many applications, such as geochemical mapping in a region, samples
may be taken at different scales (resolutions) in various cycles of
geological surveys, quite often these scales are different from the scale at
which estimates are needed. In other words, we need amethodology to
incorporate spatially sampled datawith different resolutions and obtain
the reasonable parameter values at a desired scale. Few studies
investigated the effect of multiscale data on the estimated field.
Kupfersberger et al. (1998) studied multiscale cokriging with a primary
attribute and a second attribute, where the second attribute is available
at a large scale and the primary attribute is measured at the modeling
scale. The measurements of the second attribute at large scale are used
to improve the estimate of the primary attribute.

In this research, we assume that the parameter of interest is
measured at several different scales (resolutions). Our aim is to
estimate the conditional mean field and conditional covariance of the
parameter at a target scale, whichmay be different frommeasurement
scales. In addition, measurements may or may not be available at this
target scale.

The paper is organized as follow. In Section 2, we first formulate
the kriging estimate using all measurements at different scales. The
covariance functions across different scales, which are required in
ng@lanl.gov (Z. Lu).

.V.
solving the kriging system, are given in Section 3. The applicability of
the proposed method is then demonstrated in Section 4, using several
synthetic examples and a set of vanadium geochemical data measured
from 8402 stream sediment samples, followed by a short summary.

2. Multiscale simple kriging

Let Y be a second-order stationary random function defined on
domain Ω, characterized by the mean 〈Y〉 and the unconditional
covariance function CY(x,y), for x, y∈Ω. Suppose that we have
observed Y(x) at K different scales (resolutions) S1, S2, ..., SK, and that
there are Nk measurements at scale Sk, observed at locations xi(k),
i = 1;Nk and k = 1;K . For any x at the scale S0, whichmay be different
from any observation scale Sk, k = 1;K , the kriging estimation may be
written as a linear combination of all available measurements,

Y 0ð Þ xð Þ =
XK
k=1

XNk

i=1

α kð Þ
i xð ÞY kð Þ x kð Þ

i

� �
; ð1Þ

where coefficients αi
(k) (x) are determined byminimizing the estimate

errors at the ensemble sense, which yields the kriging equations

XK
k=1

XNk

i=1

α kð Þ
i xð ÞC k;nð Þ

Y x kð Þ
i ;x nð Þ

j

� �
= C o;nð Þ

Y x;x nð Þ
j

� �
; n = 1;K ; j = 1;Nn

ð2Þ
where CY

(k,n) is the covariance function between scales Sk and Sn, and
CY
(0,n) is covariance between scales Sn and S0, which is the scale of being

estimated. There are N=Σk=1
K Nk linear equations and N unknowns

in Eq. (2). Note that coefficients αi
(k) are location-dependent, which
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Fig. 2. Schematic diagram defining various distances characterizing the relative
positions of two rectangular blocks.
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means that the set of linear algebraic equations in Eq. (2) have to be
solved for each location of interest at scale S0.

The conditional covariance at scale S0 can be derived as

ðcÞC 0ð Þ
Y x;yð Þ = C 0ð Þ

Y x;yð Þ−
XK
k=1

XNk

i=1

α kð Þ
i xð ÞC 0;kð Þ

Y y;x kð Þ
i

� �
; ð3Þ

where CY
(0)(x,y) is the unconditional covariance between x and y at

scale S0, which in general is different from the unconditional
covariance at other scales. The critical issue in this multiscale kriging
method is how to find covariance functions within any scale and
between different scales, which will be elaborated in the next section.

3. Determination of covariance between different scales

For convenience of presentation, we start from the one-dimen-
sional problem. Given a second-order stationary random field Y(x),
where x is a point in domain Ω, we consider an averaged quantity of Y
(x) over a segment of length T centered at x,

YT xð Þ = 1
T

Z x + T = 2

x − T = 2
Y uð Þdu: ð4Þ

Since Y is a spatially random variable, and so is the averaged
quantity YT. It is seen from the equation that YT has the same mean as
the original variable Y, i.e., 〈YT(x)〉= 〈Y(x)〉. From Eq. (4), one can
derive the perturbation term as

Y′T xð Þ = 1
T

Z x + T = 2

x − T = 2
Y′ uð Þdu: ð5Þ

where Y′ stands for the perturbation of the original random variable Y.
From this equation, it can be shown that the variance of YT is different
from that of Y and can be written as var(YT(x))=σY

2γ(T), where σY
2 is

the variance of Y and γ(T) is called the variance function (Vanmarcke,
1983). The variance function γ(T) measures the reduction of the point
variance under local averaging and may be found as

γ Tð Þ = 1
T2

Z T

0

Z T

0
ρ x1 − x2ð Þdx1dx2 =

2
T

Z T

0
1− τ

T

� �
ρ τð Þdτ: ð6Þ

where ρ is the correlation function of Y(x). The variance function
satisfies γ(T)≥0, γ(0)=1, and γ(−T)=γ(T). Note that for a stationary
field Y(x), YT(x) is also stationary. For a general form of covariance
functionρ(τ),γ(T) in Eq. (6) should be evaluated numerically. However,
for some special correlation functions, γ(T) can be derived analytically.
For example, for an exponential correlation function ρ(τ)=exp(−|τ|/
λ), where λ is the correlation length of Y(x), we have

γ Tð Þ = γe
1 T;λð Þ = 2

λ
T

� �2 T
λ

− 1 + e−T =λ
� �

; ð7Þ

and for a Gaussian correlation function ρ(τ)=exp(−τ2/λ2),

γ Tð Þ = γg
1 T;λð Þ = λ

T

� �2 ffiffiffi
π

p T
λ
E T = λð Þ + e−T2

=λ2

− 1
� �

; ð8Þ

where E is the error function. Subscript “1” in Eqs. (7) and (8)
denotes variance functions for one-dimensional problems, and
Fig. 1. Schematic diagram defining various distances characterizing the relative
positions of two segments.
superscripts “e” and “g” stands for exponential and Gaussian
covariance functions, respectively. Note that γ(T) satisfies limT→∞
γ(T)=0 for all these cases, which is the condition for ergodicity in the
mean.

The covariance between two averaged random variables YT and YT',
where T and T' are two segments in the domain and may represent
two different resolutions, can be expressed as (Vanmarcke, 1983)

cov YT ;YT′ð Þ = σ2
Y

2TT′

X3
k=0

−1ð ÞkT2
kγ Tkð Þ; ð9Þ

where Tk are defined in Fig. 1. Although this figure depicts a special
case in which T and T′ are partially overlapping, Eq. (9) is valid no
matter whether they are overlapping or not. For a given correlation
function ρ, once the variance function γ is found, one can compute
cov(YT,YY′) from Eq. (9).

The above derivations can be easily extended to two-dimensional
random fields. The local average of a field Y(x), where x=(x1, x2),
over a rectangular block A centered at x is defined as

YA xð Þ = 1
jA j

Z
A
Y yð Þdy; ð10Þ

where |A| denotes the area of the block A. The covariance function
between any two blocks A and A′, which can be considered as two
different resolutions, can be written as (Vanmarcke, 1983)

cov YA;YA′ð Þ = σ2
Y

4 jA j jA′ j
X3

k
=

0

X3

m
=

0

−1ð Þk + mT2
1kT

2
2mγ T1k; T2mð Þ ð11Þ

where T1k and T2m are defined in Fig. 2 and the variance function γ is
given as

γ T1k; T2mð Þ = 4
T1kT2m

Z T1k

0

Z T2m

0
1− τ1

T1k

� �
1− τ2

T2m

� �
ρ τ1; τ2ð Þdτ1dτ2:

ð12Þ

In particular, if the covariance of Y(x) is an exponential correlation
function ρ(τ1, τ2)=exp(− |τ1|/λ1− |τ2|/λ2), where λ1 and λ2 are the
correlation lengths in x1 and x2 directions, respectively, one has γ(T1k,
T2m)=γ1

e(T1k, λ1)γ1
e(T2m, λ1), and for an Gaussian correlation function

ρ(τ1, τ2)=exp(−τ12/λ12−τ22/λ22), γ(T1k, T2m)=γ1
g(T1k, λ1)γ1

g (T2m, λ2).
Similarly, for three-dimensional problems, the local average of the

random field Y(x) is defined as

YV xð Þ = 1
jV j

Z
V
Y yð Þdy; ð13Þ



;

Fig. 3. Comparison of the one-dimensional true fields and kriged mean fields at three
scales: (A) fine scale, (B) coarse scale, and (C) the intermediate scale at which no
measurements are available. Triangles below the horizontal axis show the locations
of the fine-scale samples, and inverted triangles along the upper horizontal axis
depict the locations of the coarse-scale samples (see the text). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 4. Comparison of the conditional variance for the one-dimensional case computed
using different sets of data at three scales: (A) fine scale, (B) coarse scale, and (C) the
intermediate scale at which no measurements are available. Triangles below the
horizontal axis show the locations of the fine-scale samples, and inverted triangles
along the upper horizontal axis depict the locations of the coarse-scale samples (see the
text). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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where V is the block centered at x and |V| is the volume of the block.
The covariance between two blocks V and V′ can be expressed as

cov YV xð Þ; YV′ xð Þð Þ = σ2
Y

8 jV j jV′ j
X3
k=0

X3
m=0

X3
n=0

−1ð Þk + m + nT2
1kT

2
2mT

2
3nγ T1k; T2m; T3nð Þ

ð14Þ
where |V| and |V′| stand for the volume of blocks V and V′, and T1k and
T2m, k, m=1, 2, 3, are various lengths defined similarly as in the two-
dimensional case, and the variance function γ is given as

γ T1k;T2m; T3n
� �
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8
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If the covariance function is exponential correlation function ρ(τ1,
τ2, τ3)=exp(− |τ1|/λ1− |τ2| /λ2− |τ3| /λ3), γ(T1k, T2m, T3n)=γ1

e

(T1k, λ1)γ1
e(T2m, λ2)γ1

e(T1n, λ3), and for the Gaussian correlation
function ρ(τ1, τ2, τ3)=exp(−τ12/λ1

2−τ22/λ2
2−τ32/λ3

2), γ(T1k, T2m,

T3n)=γ1
g(T1k, λ1)γ1

g(T2m, λ2)γ1
g(T2n, λ3).
It should be noted that the above derivations can be easily extended to
the case with space-dependent mean field. In this case, ordinary kriging
rather than the simplekrigingshouldbeused. Finally,weshouldalsopoint
out that themethodpresented by this paper, as the traditional single-scale
kriging method, is mainly suitable for processing the geochemical data
that follow a normal distribution or log-normal distribution.

4. Illustrative examples

In this section, we first demonstrate the validity of the proposed
method for estimating parameter fields at different scales by using
several synthetic examples, and then the method is applied to the
vanadium geochemical data measured from stream sediment samples
in Zhejiang Province, China.

4.1. Synthetic examples

In each of following examples, we generate a random field at
a finest scale, given statistics (mean, variance, and correlation



Fig. 5. Locations of conditioning points in the two-dimensional example with N1=50
(circles) and N3=10 (squares).
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lengths) of the field. By local averaging, we derive fields at different
coarse-scales, and consider these fields as “true” fields. We then
take a number of samples at these scales. Using these samples, we
estimate the kriged fields and their corresponding conditional
covariance at different scales and compare these kriged fields to the
“true” fields to assess the performance of the multiscale kriging
method.

In the first example, we consider a one-dimensional column of
length 256 (at any consistent unit), discretized into 256 grid of size 1.
The reason we choose this one-dimensional problem is that the effect
of adding conditional points at different scales can be easily
illustrated. A random field with a zero mean, unit variance, and
separately, isotropic exponential covariance function of a correlation
length 20 is generated at this grid, using the Karhunen–Loève
decomposition method (Zhang and Lu, 2004). This field is taken as
the true field at this finest scale (S1). At any coarse scale, the true field
is computed from the finest scale using Eq. (4).We calculate the “true”
fields at two coarse-scales, at Δx=2 (S2) and Δx=4 (S3), which
correspond to grids of 128 and 64, respectively. All these three “true”
fields will be used to assess the accuracy of the kriged fields.

We then take N1=16 (fine-scale set) and N3=4 (coarse-scale set)
samples at scales S1 and S3, respectively. The locations of the fine-
scale samples are marked in Fig. 3 as triangles below the horizontal
axis, and the locations of the coarse-scale samples in the top of each
diagram as inverted triangles. There is no data at the intermediate
Fig. 6. Comparison of the true field (A), and the kriged mean fields using fine-
scale S2. Our purpose is to estimate the conditional mean and
conditional covariance of the field at all three scales S1, S2, and S3.

The estimated mean fields at three different scales are illustrated
in Fig. 3. Fig. 3A compares the finest scale true field (256 grids, red
curves) and the estimated field created by the single-scale kriging
method using the fine-scale measurements alone (green curve) as
well as the estimated field obtained by the multiscale kriging model
using both coarse- and fine-scale measurements (blue curve). It is
seen from the figure that, although the estimate using the fine-
scale measurements alone captures the general trend of the true
field, incorporating coarse-scale measurements does improve the
estimate locally. The range of influence of the coarse-scale
measurements depends on the correlation length of the original
unconditional fields. In the regions that are far away from the coarse-
scale measurements, these measurements do not have a significant
impact on estimates. In addition, at this finest scale, the estimate
using multiscale measurements (blue curve) honors the fine-scale
measurements, but it does not honor the coarse-scale measure-
ments. The estimation errors using different sets of data can be
measured using the root-mean-squared error (RMSE). The RMSE is
reduced from 0.746 for the kriged field using the fine-scale
measurements only to 0.686 using both the fine- and coarse-scale
measurements.

Fig. 3B shows that at the coarse scale (64 grids ) the kriged field
obtained from the single-scale krigingmethod using the coarse-scale
measurements alone (the green curve) also captures the general
trend of the true field (red curves) and honors the measurements at
this scale, but it is relatively smooth and does not provide detailed
variability of the field. By incorporating the fine-scale measurements
with the multiscale kriging model, the estimate has been signifi-
cantly improved (blue curve). The RMSE is reduced from 0.754 for
the kriged field using the coarse-scale measurements alone to 0.601
using both the fine- and coarse-scale measurements. Note that the
estimate at the coarse scale in general will not honor the fine-scale
measurements.

It should be pointed out that, although the blue curves in Fig. 3A
and B are kriged fields obtained by the multiscale kriging model using
both coarse- and fine-scale measurements, these two fields differ
slightly, because they represent the conditional mean fields at two
different scales.

Fig. 3C illustrates the kriging estimates using all measurements for
the scale Δx=2, at which there is no measurement at all. In general,
both coarse- and fine-scale measurement are not honored at this
scale. However, it is seen that the estimated field created bymultiscale
kriging model is reasonably close to the true field at this scale.
scale data (B), and multiscale data (C), at the two-dimensional fine scale.



Fig. 7. Conditional variance at the fine scale, computed using fine-scale data only (A), and multiscale data (B).
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Fig. 4 depicts the conditional variance of estimated fields at three
different scales. At the fine scale, as shown in Fig. 4A, using the
measurements at this scale alone reduces the conditional variance
significantly, especially near the measurement locations, where the
conditional variance is zero (see red curve). Conditional variance is
further reduced once the coarse-scale measurements are taken into
account (blue curve). Although the conditional variance at the coarse-
scale measurement locations has been significant reduced, the
variance is not exactly zero, because knowing a value at a location at
the coarse scale is not enough to infer the exact value at the same
location at the fine scale. The same is true at the coarse scale, as
illustrated in Fig. 4B. At this coarse scale, the conditional variance at
the fine-scale measurement locations is not zero, though it is very
small (blue curve). At scale S2, where there is no measurement
available, the conditional variance is not zero at all coarse- or fine-
scale measurement locations (Fig. 4C), but the conditional variance at
this scale has been significantly reduced, as compared to the
unconditional variance of σY

2=0.951 at this scale.
In the second case, we consider a two-dimensional domain of

128×128, discretized into 1×1 elements (scale S1, 16384 elements in
total). A random field with zero mean, unit variance, and an isotropic
separable exponential covariance function of correlation length λ=20
is generated using the Karhunen–Loève decomposition method (Zhang
and Lu, 2004). From this field, two additional fields of grids 64×64
(scale S2, Δx=Δy=2, and 4096 elements) and 32×32 (scale S3,
Δx=Δy=4, and 1024 elements) are derived using Eq. (10). These three
Fig. 8. Comparison of the true field (A), and the kriged mean fields usin
fields are considered as “true” fields. Suppose that N1=50 measure-
ments are taken from fine-scale S1,N3=10measurements from coarse-
scale S3, and no observation is available at the intermediate scale S2. The
locations of these measurements are displayed in Fig. 5.

Fig. 6 compares the true field at the finest scale (Fig. 6A) with the
kriged field obtained from the single-scale kriging method using the
fine-scale measurements alone (Fig. 6B) and the kriged field created
by the multiscale kriging model using measurements at both fine and
coarse-scales (Fig. 6C). The figure shows that the kriged field using the
fine-scale measurements alone captures the most of the heterogene-
ities of the true field but incorporating additional measurements
at the coarse scale using the multiscale kriging method improves the
accuracy of the estimated field slightly. The root mean square error of
the kriged fields is reduced from 0.750 for the estimated field using
the fine-scale measurements to 0.684 for the field estimated using
measurements at both the fine and coarse-scales.

Fig. 7 illustrates the comparison between the fields of the
conditional variance at the fine scale, conditioned at fine-scale
measurements only (Fig. 7A) and at both fine- and coarse-scale
measurements (Fig. 7B). A significant reduction of the local condi-
tional variance is evident around the coarse-scale conditioning points
by incorporating coarse-scale measurements in estimating the fine-
scale field.

At the coarse scale, since only a small number of measurements are
available, the kriged field using these coarse-scale measurements
alone is very close to a relatively uniform, unconditional mean field, as
g coarse-scale data (B) and multiscale data (C), at the coarse scale.



Fig. 9. Conditional variance at the coarse scale, computed using fine-scale data only (A), and multiscale data (B).
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illustrated in Fig. 8B. However, if the fine-scale measurements are also
incorporated into the kriged field, it becomes much close to the true
field (Fig. 8C). The root mean square error of the kriged fields at the
coarse scale is reduced from 0.865 for the estimated field using the
coarse-scale measurements to 0.619 for the field estimated using
measurements at both the fine and coarse-scales.

It should be noted again that the fields presented in Figs. 6C and 8C
are slightly different, even though both of them are kriged fields using
all fine- and coarse-scale measurements. These two fields represent
conditional fields at two different scales.

Fig. 9 compares the conditional variance at the coarse scale, using
coarse-scale measurements alone (Fig. 9A) and using all coarse- and
fine-scale measurements (Fig. 9B). The figure demonstrates that
incorporating fine-scale measurements significantly reduces the
conditional variance at the coarse scale.

At the intermediate scale, where there is no data available, the
conditional mean and variance can be estimated from measurements
at other scales. Fig. 10 compares the true field at this scale (Fig. 10A)
against the estimated conditional mean field using measurements at
both fine and coarse-scales (Fig. 10B). Fig. 11 illustrates the conditional
variance at this intermediate scale by using measurements at other
two scales. It is seen from these figures that the conditional mean field
estimated using measurements at other scales is close to the true field
and that the conditional variance can be significantly reduced. This
example demonstrates that this multiscale simple kriging method can
be used to estimate the conditional mean and variance fields at any
Fig. 10. Comparison of the true field (A), and the kriged field using multiscale
scale where there is no data available, as long as measurements are
available at some other scales.

4.2. Application to geochemical surveyed data

In the previous discussion, our method has been tested on several
synthetic examples in general. Here, the vanadium (V) geochemical
data measured from 8402 stream sediment samples in Zhejiang
Province, China, are used to further demonstrate the validity of the
multiscale kriging method. These stream sediment data are supplied
by the Zhejiang Geophysical and Geochemical Exploration Institute.
The samples were collected at the mouth of first-order streams or in
the connected second-order stream in 1980–1986. Fig. 12 shows the
spatial distribution of the total 8402 sample stations (in the figure,
14,641 meshes in total, of which 6239 meshes are empty). At each
sampling station, sediment was gathered at four points with an
average sampling density of 1 point/1 km2. Samples from each station
were composed of an equal weight of sediment from these four
sampling points. The minimum weight of each sample is 2.5 kg. The
composite samples from these stations, with an average density of one
sample per 4 km2, were submitted to the laboratory for chemical
analysis. The content of vanadium was determined by the X-ray
fluorescence spectrometry analysis with the detection limit of 15 ppm.
Fig. 13 illustrates the result obtained for the V data as a histogram and
“Probability–Probability” plot (P–P plot). It is shown that these V
content measurements follow a normal distribution.
data (B), at the intermediate scale where no measurements are available.



Fig. 11. Conditional variance at the intermediate scale using multiscale data.

Fig. 13. Histogram and P–P plot for the vanadium content in stream sediments (8402
samples) from Zhejiang Province: (a) histogram; and (b) P–P plot.
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We consider these original measured data (contrast set) on the
grid of 2×2 km (one sample per 4 km2) as the spatially distributed
dataset at the finest scale, from which the vanadium content at two
additional coarser scales of 8×8 km (Set A, 3660 meshes, 2084
measured samples in total) and16×16 km (Set B, 915 meshes, 524
measured samples in total) are derived. Because of space limit, we
here only discuss the comparison of the conditional variance for a one-
dimensional column A′1–A′121 of length 121 as indicated in Fig. 12. It is
seen from Fig. 14 that the conditional variance of the estimated field
created by the multiscale Kriging method using both Sets A and B
(green curve) is obviously smaller than that of single-scale Kriging
method alone using Set A (red curve), because more information
(Set B) has been used in the multiscale kriging. Since the traditional
simple kriging cannot be applied to the case of multiscale data points,
to make our comparisons more reasonable, we map set B (which is on
the 16×16-km support scale) onto the support scale of 8×8 km and
combine the resulted dataset with set A (which is also on 8×8 km) to
form the dataset C (3660 meshes, of which 2608 meshes have
samples). The conditional variance from the simple kriging using this
combined dataset C is also compared with the conditional variance
Fig. 12. Locations of stations sampling stream sediments in Zhejiang Province, China.
from the multiscale kriging method using Sets A and B. The figure
indicates that, using the same dataset, the multiscale kriging method
may produce more accurate results than the single-scale kriging
method, even though the same set of measurements is used
(comparing green and blue curves). The reason is that, if multiscale
data are available, the multiscale kriging effectively take the scale
information into account, while in the single-scale kriging, such scale
information has been lost.
Fig. 14. Comparison of the conditional variance along the profile A′1 – A′121 computed
using different sets of vanadium geochemical data measured from stream sediments.
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5. Summary and conclusions

In this study, we propose a simple multiscale kriging algorithm to
incorporate data observed at multiscales (multiresolutions). We
assume that there are a number of measurements at different scales
that may be different from the target scale at which the parameter
values are needed. Similar to the simple kriging, the parameter at the
target scale is represented as a linear combination of all available
measurements and the coefficients in this linear combination are
solved from the kriging system, which is related to covariance
functions across the scales. The key point in this method is to find
the covariance functions between blocks at different scales. We
illustrated the method using several one-dimensional and two-
dimensional synthetic examples as well as measured geochemical
data.

These examples demonstrate that, at any scale at which some
measurements are available, by incorporating measurements from all
scales, the estimated field is better than the field estimated only using
the measurements at this scale.

Second, if measurements are available at the target scale, these
measurements will be honored. However, measurements at other
scales will not be honored at the target scale, even though they will
reduce the conditional covariance at the target scale.

Furthermore, this method allows us to estimate a parameter field
at the scale that does not have any measurements. In this case, the
conditional mean field and conditional covariance can be found using
measurements at other scales. Of course, all measurements will not be
honored at the target scale. The method may be useful in some
applications, such as numerical adaptive mesh refinement.
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